AN INTERFACE FOR THE FDTD DIAKOPTICS

Tsugumichi SHIBATA and Masaaki TOMIZAWA

NTT System Electronics Laboratories
3-1 Morinosato Wakamiya, Atsugi, 243-0198 Japan

Abstract --- A new formulation of the TLM type (or the
directional wave type) interface for the FDTD diakopticsis
proposed. The interface is implemented in the FDTD
algorithm using the concept of the impedance boundary
condition incorporated with a signal source model without
adopting the absorbing boundary condition. Thus efficient
and rigorous analyses are accomplished.

I INTRODUCTION

Diakoptics is considered to be a key to the
efficient analysis of large-scale structures. In this
approach, a structure is divided into parts that can be
analyzed individually. Thus the method is suitable for
parallel computations using a multi-CPU machine or
independent computers connected by networks.

The diakoptics can be formulated both in the time
and frequency domains. The time domain diakoptics is
advantageous for the analysis of circuits that include
nonlinear parts and has been discussed in connection with
the time domain methods of numerical field simulations
[1]-[5]. Some original works have been done using the
TLM method [1]-[3]. In the TLM algorithm, the discrete
Green function can be evaluated naturally in a form of
directional voltage wave impulse responses. On the other
hand, the implementation in the FDTD method is not as
simple as in the TLM method. This is because the total
field is dealt with in the FDTD instead of the directional
fields. Emulation of the TLM type interface in the FDTD
was studied by Huang et. a. [5], who proposed arecursive
algorithm for separating the total field into directional
waves. However, they required the use of a perfect
absorbing boundary condition (ABC) for absorbing the
impulse waves, which degraded the efficiency and utility
of the method. They also proposed a total-field type
interface and applied it to one-dimensional problems, but
extending this type to two- and three-dimensional
problems is not straightforward in fact.

This paper presents a new interface for the FDTD
diakoptics. The interface is completely equivalent to the

TLM type. Nevertheless, the ABC is not necessary.
Instead, we use the impedance boundary condition (IBC).
This enables efficient and rigorous calculations. The
interface presented here may be considered the time
domain version of that described in [6].

. FORMULATION

Let us start with a one-dimensional example for
simplicity. Figure 1 represents a transmission line model of
plane waves traveling in the x direction. The infinitely
long line is loaded with a signal source at the center and is
divided into three segments as shown. Two interfaces are
defined: one is between segments (i) and (ii); the other
between (i) and (iii). In our formulation, the removed
nodes are terminated by a standard impedance after
dividing the segments. Directional waves which are used
to define the Green function are derived using the
terminating conditions. In the following, we will obtain a
discrete Green function that characterizes segments (i) and
(i), and then calculate the response of the whole structure
based on the diakoptics approach.

I-l. Calculation of the discrete Green function

Figure 2 illustrates segment (ii). A voltage source
with an internal impedance of R is newly added to
terminate the removed node at the interface. Suppose that
the field has E, and H, components only, which correspond
to nodal voltage and the current of the transmission line,
respectively. The directional waves defined in the figure at
the interface are expressed in terms of the nodal voltage
and current as

aly= YO-RIO .
Vour(t) = w o

The terminating condition is represented by
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V() -RI1(t) =Vs(t) 3
From (1)-(3), we get

Vs(t)

Vin(t) = (4)
V()

Vout(t) = V(t) - (5)

Equations (4) and (5) are the basis of subsequent
derivation. We define the Green function g(t) as the
response Vy,(t) of the impulse excitation vi,(t) = J(t=0),
which completely characterizes segment (ii). g(t) can be
calculated by the following procedure.

#1 Excite segment (ii) using voltage source v4(t) such as
vy(t) = 2t=0).

#2 Find the response of nodal voltage V(t) by time
domain simulation.

#3 Calculate g(t) by g(t) = Vau(t) = V(1) - Xt=0).

The terminating condition can be implemented in
the FDTD algorithm using the concept of the IBC
incorporated with a signal source model, which was
proposed in [6]. According to the phantom-known type
formulation given in [6], the FDTD formula of the IBC for
E/(0)inFig. 2is

£0&ry-ARAX

EN(0) = EMO
v E0&rHAURAX ¥ ©
i 2At HIL2(1/9)
(E0Ery+AURAX)AX
27t Ec+ECT ]
(o€ *AURAX)AX | 2R ©)

In this discrete system, the value at timet = nAt is denoted
by superscript n. The last term in (6) represents the
excitation. When impulse excitation is used, Eg is set to 1
for n =0, and O otherwise. Note here that the time stepping
starts from n = 0 and EL appears two times both in steps n
=0 and 1 in the calculation. Figure 3 shows calculated
discrete Green functions when the terminating impedance
R is set to 377 and 50Q, respectively. A virtually semi-
infinitely long mesh (1024Ax) was used in the calculation.

Segment (iii) Segment (i) Segment (ii)
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Fig. 1 One-dimensional example - a model of plane waves
propagating in x-direction: infinite transmission line loaded with
alumped signal source.
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Fig.2  Characterization of the segment (ii) by a discrete Green
function.
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Fig. 3 Calculated discrete Green functions for the segment
(if): Ax/IAt = 2¢; (@) R=377Q; (b) R=50Q.
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[1-11.  Convolution

Once the Green function is obtained, the response
Vout (FEou) Of segment (ii) for arbitrary input vi,, (=E;)) can
be calculated by the convolution

n
EDy = ), 0" El,
i=0 )

)

The response of segment (iii) can be written by (7) as well
since the Green function of (iii) isidentical to that of (ii).
Next, we incorporate Eq. (7) into the calculation of
segment (i) as the boundary condition at the removed
nodes. Figure 4 depicts the interface between segments (i)
and (ii). The removed node of segment (i) is terminated by
a voltage source Eg with the standard impedance R, too.
Then the influence of segment (ii) can be fed back via
voltage source Eq. Taking into account that Eyj, = Ej o
and E2,out = El,ina

n-1
Elh = 20" Elon
=0 : ©)
n-1
Elln g Elout + ngElout
i=0 (9)

Recalling the relations given by Egs. (4) and (5), we notice
that Eq. (8) represents E,"Y2, and that Eq. (9) can be
modified to

n-1

2g° 2 i
El =9 _ENO+ — 5 Y.g" El ou
1+g 1+g” iZo ] (10)

Substituting these results into the excitation term of Eq.
(6), we eventually get

€0 &ry-A/RAX

Ey(0) =
v(©) £0&r, O 1-29°/(1+g°)} /RAX

Ey(0)

2At

+ — H 2 (-12)
[e0&ry+AH{1-297/(1+g")} /RAX]AX

2At

[eogry+At{1 Zg %/(1+g%)} IRAX]RAX
n-1

ngEl out T Zgn 1IEl out

1+g
(11)
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Fig. 4  Replacement of the segment (ii) by the Green function
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Fig. 5 Simulation result of example in Fig. 1. waveforms at
the interface between the segments (i) and (ii). Pure FDTD uses a

virtualy infinitely long mesh ( (i)+(ii)+(iii) = 1024Ax ). In the
diakoptics, R is set to 50Q. N is number of terms in the
convolution.

for updating value E(0) of the removed node of segment
(i). Directional wave E; o has to be evaluated at every
time step since it is required in the next updating of E(0)
as seen in Eq. (11). This can be done according to

1
Efout = Ey v(© +E
n-1
1 r .
== ENO+ Y 0™ E}ou
1+g i=0 (12)
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Consequently, the update of all necessary variables can be
obtained successfully. Figure 5 presents a result for the
circuit shown in Fig. 1. Waveforms calculated by the
diakoptics are compared with the result of a pure FDTD
analysis. In the diakoptics, the number of terms in the
convolution [Egs. (8) and (9)] are varied as parameter N to
see if we can truncate the Green function by an appropriate
length. Good agreement with the pure FDTD was obtained
by taking the first 32 terms of the discrete Green function
into account in this particular example.

1. EXTENSION TO 2- AND 3-DIMENSIONAL
PROBLEMS

Extension to multi-port circuits and/or 2- and 3-
dimensional problems is straightforward. In these cases,
we handle alot of removed nodes for each segment which
represent tangential electric field components on the
interface planes. Therefore, a set of Green functions that
includes all combination of impulse responses between the
removed nodes is required. However, since g° is always
zero when the observation point is different from the
excitation point, formulas (11) and (12) do not formally
change so much. Only the terms including the summation
by X need to be modified.

Figure 6 presents a simulation result for a 2-
dimensional case. The rectangular waveguide with an
inductive iris shown in (a) was analyzed using the pure
FDTD and the diakoptics. The structure was soft-excited at
the interface plane between segments (i) and (iii) by a
band-limited raised cosine pulse with the profile of the
TE19 mode. Then the waveform was compared at the
observation point over the iris. The waveforms compare
precisely within 5 digits of accuracy.

V. CONCLUSIONS

We have proposed a new interface for the FDTD
diakoptics. The formulation was given with 1- and 2-
dimensional numerical examples, which demonstrate the
validity of the interface. This interface emulates the TLM
type interface without using an absorbing boundary
condition, and thus is capable of analyses that are as
efficient as those of the TLM method.
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